
Girisha
Under the guidance of
Prof. K.V.S. Hari

February 02, 2013
Define the navigation state vector of right foot INS at time instant $k \in \mathbb{N}^+$

$$\hat{x}_k^{(R)} \triangleq \begin{bmatrix} \hat{p}_k^{(R)} & \hat{v}_k^{(R)} & \hat{\theta}_k^{(R)} \end{bmatrix}^T$$

- $\hat{p}_k^{(R)} \in \mathbb{R}^3$ is the position estimate of right foot INS
- $\hat{v}_k^{(R)} \in \mathbb{R}^3$ is the velocity estimate of right foot INS
- $\hat{\theta}_k^{(R)} \in \mathbb{R}^3$ is the attitude estimate of right foot INS
Notations

- Define the navigation state vector of right foot INS at time instant $k \in \mathbb{N}^+$

$$
\hat{x}^{(R)}_k \triangleq \begin{bmatrix}
\hat{p}^{(R)}_k \\
\hat{v}^{(R)}_k \\
\hat{\theta}^{(R)}_k
\end{bmatrix}^T
$$

- $\hat{p}^{(R)}_k \in \mathbb{R}^3$ is the position estimate of right foot INS
- $\hat{v}^{(R)}_k \in \mathbb{R}^3$ is the velocity estimate of right foot INS
- $\hat{\theta}^{(R)}_k \in \mathbb{R}^3$ is the attitude estimate of right foot INS

- Define the navigation state vector of left foot INS at time instant $k \in \mathbb{N}^+$

$$
\hat{x}^{(L)}_k \triangleq \begin{bmatrix}
\hat{p}^{(L)}_k \\
\hat{v}^{(L)}_k \\
\hat{\theta}^{(L)}_k
\end{bmatrix}^T
$$

- $\hat{p}^{(L)}_k \in \mathbb{R}^3$ is the position estimate of left foot INS
- $\hat{v}^{(L)}_k \in \mathbb{R}^3$ is the velocity estimate of left foot INS
- $\hat{\theta}^{(L)}_k \in \mathbb{R}^3$ is the attitude estimate of left foot INS
At any instant of time $k \in \mathbb{N}^+$, the distance between position estimates of right and left foot INS cannot be greater than a parameter known as *foot-to-foot maximum separation* (γ). Based on this range constraint, we develop **Centroid Method** to fuse the navigation information of right and left foot-mounted ZUPT aided INS.
Define the unconstrained joint position estimate vector at time instant \(k \in \mathbb{N}^+ \)

\[
\hat{p}_k^{(\text{joint})} \triangleq \begin{bmatrix} \hat{p}_k^{(R)} & \hat{p}_k^{(L)} \end{bmatrix}^T
\]

- \(\hat{p}_k^{(R)} \in \mathbb{R}^3 \) is the position estimate of right foot INS
- \(\hat{p}_k^{(L)} \in \mathbb{R}^3 \) is the position estimate of left foot INS
Define the unconstrained joint position estimate vector at time instant $k \in \mathbb{N}^+$

\[
\hat{p}_k^{(joint)} \triangleq \begin{bmatrix} \hat{p}_k^{(R)} & \hat{p}_k^{(L)} \end{bmatrix}^T
\]

- $\hat{p}_k^{(R)} \in \mathbb{R}^3$ is the position estimate of right foot INS
- $\hat{p}_k^{(L)} \in \mathbb{R}^3$ is the position estimate of left foot INS

Define the matrix

\[
L \triangleq \begin{bmatrix} I_3 & -I_3 \end{bmatrix}
\]

where I_q is the identity matrix of size q.
Centroid Method - Problem Formulation

At any instant of time $k \in \mathbb{N}^+$, following condition must hold:

$$\left\| L\hat{p}_k^{(\text{joint})} \right\|_2^2 = \left\| \hat{p}_k^{(R)} - \hat{p}_k^{(L)} \right\|_2^2 \leq \gamma^2$$

where $\gamma \in \mathbb{R}^+$ is the foot-to-foot maximum separation.
At any instant of time $k \in \mathbb{N}^+$, following condition must hold:

$$
\left\| \mathbf{L} \hat{\mathbf{p}}_k^{(\text{joint})} \right\|^2_2 = \left\| \hat{\mathbf{p}}_k^{(R)} - \hat{\mathbf{p}}_k^{(L)} \right\|^2_2 \leq \gamma^2
$$

where $\gamma \in \mathbb{R}^+$ is the foot-to-foot maximum separation

Hence, we can formulate the problem in constrained least squares framework as:

$$
\mathbf{p}_k^{(\text{joint})} = \arg\min_{\mathbf{p} \in \mathbb{R}^6} \left(\left\| \hat{\mathbf{p}}_k^{(\text{joint})} - \mathbf{p} \right\|^2_2 \right) \text{ subject to } \left\| \mathbf{L} \mathbf{p}_k^{(\text{joint})} \right\|^2_2 \leq \gamma^2
$$

(1)

where

$$
\mathbf{p}_k^{(\text{joint})} \overset{\Delta}{=} \begin{bmatrix} \mathbf{p}_k^{(R)} \\ \mathbf{p}_k^{(L)} \end{bmatrix}^T
$$

is the range constrained joint position estimate vector at time instant $k \in \mathbb{N}^+$
Centroid Method - Solution

In Lagrangian formulation with Lagrange multiplier λ_C:

$$J \left(\mathbf{p}^{(\text{joint})}_k, \lambda_C \right) \triangleq \left\| \hat{\mathbf{p}}^{(\text{joint})}_k - \mathbf{p}^{(\text{joint})}_k \right\|^2_2 + \lambda_C \Psi \left(\mathbf{p}^{(\text{joint})}_k \right)$$

where

$$\Psi \left(\mathbf{p}^{(\text{joint})}_k \right) = \left\| \mathbf{Lp}^{(\text{joint})}_k \right\|^2_2 - \gamma^2$$
Centroid Method - Solution

In Lagrangian formulation with Lagrange multiplier λ_C:

\[
J \left(p_k^{(joint)}, \lambda_C \right) \triangleq \left\| \hat{p}_k^{(joint)} - p_k^{(joint)} \right\|^2_2 + \lambda_C \Psi \left(p_k^{(joint)} \right)
\]

where

\[
\Psi \left(p_k^{(joint)} \right) = \left\| Lp_k^{(joint)} \right\|^2_2 - \gamma^2
\]

Lagrange condition (normal equations):

\[
\frac{\partial J \left(p_k^{(joint)}, \lambda_C \right)}{\partial p_k^{(joint)}} = 0 \implies \left(I_6 + \lambda_C L^T L \right) p_k^{(joint)} = \hat{p}_k^{(joint)}
\]

\[
(2)
\]

\[
\frac{\partial J \left(p_k^{(joint)}, \lambda_C \right)}{\partial \lambda_C} = 0 \implies \left\| Lp_k^{(joint)} \right\|^2_2 = \gamma^2
\]

\[
(3)
\]
The solution of equation (2) is

\[p_{k}^{(joint)} = (I_6 + \lambda C L^T L)^{-1} \hat{p}_{k}^{(joint)} \]

(4)
The solution of equation (2) is

\[\mathbf{p}_k^{(joint)} = (\mathbf{I}_6 + \lambda_C \mathbf{L}^T \mathbf{L})^{-1} \hat{\mathbf{p}}_k^{(joint)} \]

\[\text{(4)} \]

Solve for \(\lambda_C \):

First note that

\[(\mathbf{I}_6 + \lambda_C \mathbf{L}^T \mathbf{L})^{-1} = \frac{1}{1 + 2 \lambda_C} \begin{bmatrix} (1 + \lambda_C) \mathbf{I}_3 & \lambda_C \mathbf{I}_3 \\ \lambda_C \mathbf{I}_3 & (1 + \lambda_C) \mathbf{I}_3 \end{bmatrix} \]

\[\text{(5)} \]

provided \(\lambda_C \neq -0.5 \)
The solution of equation (2) is

\[\mathbf{p}_k^{(\text{joint})} = \left(\mathbf{I}_6 + \lambda_C \mathbf{L}^T \mathbf{L} \right)^{-1} \hat{\mathbf{p}}_k^{(\text{joint})} \]

(4)

Solve for \(\lambda_C \):

First note that

\[\left(\mathbf{I}_6 + \lambda_C \mathbf{L}^T \mathbf{L} \right)^{-1} = \frac{1}{1 + 2 \lambda_C} \begin{bmatrix} (1 + \lambda_C) \mathbf{I}_3 & \lambda_C \mathbf{I}_3 \\ \lambda_C \mathbf{I}_3 & (1 + \lambda_C) \mathbf{I}_3 \end{bmatrix} \]

(5)

provided \(\lambda_C \neq -0.5 \)

Substitute Eq. (4) in Eq. (3)

\[\Rightarrow \left\| L \left(\mathbf{I}_6 + \lambda_C \mathbf{L}^T \mathbf{L} \right)^{-1} \hat{\mathbf{p}}_k^{(\text{joint})} \right\|_2^2 = \gamma^2 \]
Substitute Eq. (5) and simplifying:

\[\lambda_C = 0.5 \left(\frac{\hat{d}_k}{\gamma} - 1 \right) \quad (6) \]

where

\[\hat{d}_k \triangleq \| \hat{p}_k^{(R)} - \hat{p}_k^{(L)} \|_2 \]

is the distance between the unconstrained position estimates of right and left foot INS.
Substitute Eq. (5) and simplifying:

\[\lambda_C = 0.5 \left(\frac{\hat{d}_k}{\gamma} - 1 \right) \] \hspace{1cm} (6)

where

\[\hat{d}_k \triangleq \left\| \hat{p}_k^{(R)} - \hat{p}_k^{(L)} \right\|_2 \]

is the distance between the unconstrained position estimates of right and left foot INS.

Substitute Eq. (5), Eq. (6) in Eq. (4) and simplifying:

\[p_k^{(R)} = \frac{\left(\hat{d}_k + \gamma \right) \hat{p}_k^{(R)} + \left(\hat{d}_k - \gamma \right) \hat{p}_k^{(L)}}{2 \hat{d}_k} \] \hspace{1cm} (7)

\[p_k^{(L)} = \frac{\left(\hat{d}_k + \gamma \right) \hat{p}_k^{(L)} + \left(\hat{d}_k - \gamma \right) \hat{p}_k^{(R)}}{2 \hat{d}_k} \] \hspace{1cm} (8)
Sphere of diameter γ and centre at p_0

Figure: Graphical representation of unconstrained and constrained position estimates
Alternate Problem Formulation

In the figure, the centre of the sphere

\[p_0 = \frac{p_k^{(R)} + p_k^{(L)}}{2} \] \hspace{1cm} (9)

Hence, by substituting

\[p_k^{(L)} = 2p_0 - p_k^{(R)} \] \hspace{1cm} (10)

an alternate formulation of (1) is written as

\[p_k^{(R)} = \arg\min_{p \in \mathbb{R}^3} \left(\left\| \hat{p}_k^{(joint)} - L^T p + 2p_0^{(joint)} \right\|_2^2 \right) \]

subject to \[\left\| p_k^{(R)} - p_0 \right\|_2^2 \leq \frac{\gamma^2}{4} \]

where

\[p_0^{(joint)} \triangleq \begin{bmatrix} 0 & p_0 \end{bmatrix}^T \]
Alternate Problem Formulation

Solution in Lagrangian framework is found to be:

\[p_k^{(R)} = \frac{\gamma \hat{p}_k^{(R)} - \gamma \hat{p}_k^{(L)} + 2 \hat{d}_k p_0}{2 \hat{d}_k} \] (11)

Substitute Eq. (11) in Eq. (10)

\[p_k^{(L)} = \frac{\gamma \hat{p}_k^{(L)} - \gamma \hat{p}_k^{(R)} + 2 \hat{d}_k p_0}{2 \hat{d}_k} \] (12)

If we define the centroid

\[p_0 \triangleq \frac{\hat{p}_k^{(R)} + \hat{p}_k^{(L)}}{2} \] (13)

solution given by Eq. (11) and (12) reduces to the solution given by Eq. (7) and Eq. (8) respectively.
Weighted Centroid Method

- Instead of defining the centroid as the midpoint of right and left foot INS position estimates as in Eq. (13), we can make use of the entries of error covariance matrix P, to define the weighted centroid.

- Range constrained right and left foot position estimates given by Eq. (11) and (12) is used as the pseudo-measurement in complementary feedback Kalman Filter.
Centroid Method - Algorithm Description

If $\hat{d}_k > \gamma$, then execute the following steps.

- Calculate the pseudo-measurement for the position given by Eq. (11) and Eq. (12), where p_0 is given by Eq. (13) or as explained in weighted centroid method.
Centroid Method - Algorithm Description

If $\hat{d}_k > \gamma$, then execute the following steps.

- Calculate the pseudo-measurement for the position given by Eq. (11) and Eq. (12), where p_0 is given by Eq. (13) or as explained in weighted centroid method.
- Kalman filter position pseudo-measurement update for right foot INS:
 1. Compute the Kalman gain:

$$K_{k}^{(R)} = P_{k}^{(R)} \left(H_{(pos)}^{(R)} \right)^T \left[H_{(pos)}^{(R)} P_{k}^{(R)} \left(H_{(pos)}^{(R)} \right)^T + R_{(pos)}^{(R)} \right]^{-1}$$

 2. Correct the navigation state vector using the position pseudo-measurement:

$$\hat{x}_k^{(R)} = \hat{x}_k^{(R)} + K_{k}^{(R)} \left[p_k^{(R)} - H_{(pos)}^{(R)} \hat{x}_k^{(R)} \right]$$

 3. Correct the state covariance matrix:

$$P_{k}^{(R)} = \left(I - K_{k}^{(R)} H_{(pos)}^{(R)} \right) P_{k}^{(R)}$$
Kalman filter position pseudo-measurement update for left foot INS:

1. Compute the Kalman gain:

\[K^{(L)}_k = P^{(L)}_k \left(H^{(L)}_{(pos)} \right)^T \left[H^{(L)}_{(pos)} P^{(L)}_k \left(H^{(L)}_{(pos)} \right)^T + R^{(L)}_{(pos)} \right]^{-1} \]

where \(H^{(L)}_{(pos)} = \begin{bmatrix} I_3 & 0_{3\times6} \end{bmatrix} \) is the position pseudo-measurement observation matrix of left foot INS and \(R^{(L)}_{(pos)} \) is the position pseudo-measurement noise covariance matrix of left foot INS.

2. Correct the navigation state vector using the position pseudo-measurement:

\[\hat{x}^{(L)}_k = \hat{x}^{(L)}_k + K^{(L)}_k \left[p^{(L)}_k - H^{(L)}_{(pos)} \hat{x}^{(L)}_k \right] \]

3. Correct the state covariance matrix:

\[P^{(L)}_k = \left(I - K^{(L)}_k H^{(L)}_{(pos)} \right) P^{(L)}_k \]
Thank You